Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Mil Med Res ; 11(1): 17, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475827

RESUMO

BACKGROUND: Tactile and mechanical pain are crucial to our interaction with the environment, yet the underpinning molecular mechanism is still elusive. Endophilin A2 (EndoA2) is an evolutionarily conserved protein that is documented in the endocytosis pathway. However, the role of EndoA2 in the regulation of mechanical sensitivity and its underlying mechanisms are currently unclear. METHODS: Male and female C57BL/6 mice (8-12 weeks) and male cynomolgus monkeys (7-10 years old) were used in our experiments. Nerve injury-, inflammatory-, and chemotherapy-induced pathological pain models were established for this study. Behavioral tests of touch, mechanical pain, heat pain, and cold pain were performed in mice and nonhuman primates. Western blotting, immunostaining, co-immunoprecipitation, proximity ligation and patch-clamp recordings were performed to gain insight into the mechanisms. RESULTS: The results showed that EndoA2 was primarily distributed in neurofilament-200-positive (NF200+) medium-to-large diameter dorsal root ganglion (DRG) neurons of mice and humans. Loss of EndoA2 in mouse NF200+ DRG neurons selectively impaired the tactile and mechanical allodynia. Furthermore, EndoA2 interacted with the mechanically sensitive ion channel Piezo2 and promoted the membrane trafficking of Piezo2 in DRG neurons. Moreover, as an adaptor protein, EndoA2 also bound to kinesin family member 5B (KIF5B), which was involved in the EndoA2-mediated membrane trafficking process of Piezo2. Loss of EndoA2 in mouse DRG neurons damaged Piezo2-mediated rapidly adapting mechanically activated currents, and re-expression of EndoA2 rescued the MA currents. In addition, interference with EndoA2 also suppressed touch sensitivity and mechanical hypersensitivity in nonhuman primates. CONCLUSIONS: Our data reveal that the KIF5B/EndoA2/Piezo2 complex is essential for Piezo2 trafficking and for sustaining transmission of touch and mechanical hypersensitivity signals. EndoA2 regulates touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking in sensory neurons. Our findings identify a potential new target for the treatment of mechanical pain.


Assuntos
Aciltransferases , Hiperalgesia , Canais Iônicos , Tato , Animais , Feminino , Masculino , Camundongos , Hiperalgesia/patologia , Canais Iônicos/metabolismo , Cinesinas/metabolismo , Mecanotransdução Celular/fisiologia , Camundongos Endogâmicos C57BL , Dor , Primatas , Tato/fisiologia , Aciltransferases/metabolismo
2.
Pain ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38422489

RESUMO

ABSTRACT: Acute and chronic itch are prevalent and incapacitating, yet the neural mechanisms underlying both acute and chronic itch are just starting to be unraveled. Activated transcription factor 4 (ATF4) belongs to the ATF/CREB transcription factor family and primarily participates in the regulation of gene transcription. Our previous study has demonstrated that ATF4 is expressed in sensory neurons. Nevertheless, the role of ATF4 in itch sensation remains poorly understood. Here, we demonstrate that ATF4 plays a significant role in regulating itch sensation. The absence of ATF4 in dorsal root ganglion (DRG) neurons enhances the itch sensitivity of mice. Overexpression of ATF4 in sensory neurons significantly alleviates the acute and chronic pruritus in mice. Furthermore, ATF4 interacts with the transient receptor potential cation channel subfamily V member 4 (TRPV4) and inhibits its function without altering the expression or membrane trafficking of TRPV4 in sensory neurons. In addition, interference with ATF4 increases the itch sensitivity in nonhuman primates and enhances TRPV4 currents in nonhuman primates DRG neurons; ATF4 and TRPV4 also co-expresses in human sensory neurons. Our data demonstrate that ATF4 controls pruritus by regulating TRPV4 signaling through a nontranscriptional mechanism and identifies a potential new strategy for the treatment of pathological pruritus.

3.
Adv Sci (Weinh) ; 11(12): e2307256, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233193

RESUMO

Atherosclerosis is initiated with endothelial cell (EC) dysfunction and vascular inflammation under hyperlipidemia. Sirtuin 3 (SIRT3) is a mitochondrial deacetylase. However, the specific role of endothelial SIRT3 during atherosclerosis remains poorly understood. The present study aims to study the role and mechanism of SIRT3 in EC function during atherosclerosis. Wild-type Sirt3f/f mice and endothelium-selective SIRT3 knockout Sirt3f/f; Cdh5Cre/+ (Sirt3EC-KO) mice are injected with adeno-associated virus (AAV) to overexpress PCSK9 and fed with high-cholesterol diet (HCD) for 12 weeks to induce atherosclerosis. Sirt3EC-KO mice exhibit increased atherosclerotic plaque formation, along with elevated macrophage infiltration, vascular inflammation, and reduced circulating L-arginine levels. In human ECs, SIRT3 inhibition resulted in heightened vascular inflammation, reduced nitric oxide (NO) production, increased reactive oxygen species (ROS), and diminished L-arginine levels. Silencing of SIRT3 results in hyperacetylation and deactivation of Argininosuccinate Synthase 1 (ASS1), a rate-limiting enzyme involved in L-arginine biosynthesis, and this effect is abolished in mutant ASS1. Furthermore, L-arginine supplementation attenuates enhanced plaque formation and vascular inflammation in Sirt3EC-KO mice. This study provides compelling evidence supporting the protective role of endothelial SIRT3 in atherosclerosis and also suggests a critical role of SIRT3-induced deacetylation of ASS1 by ECs for arginine synthesis.


Assuntos
Aterosclerose , Sirtuína 3 , Humanos , Camundongos , Animais , Pró-Proteína Convertase 9 , Argininossuccinato Sintase , Arginina , Endotélio , Inflamação
4.
J Leukoc Biol ; 115(1): 164-176, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37170891

RESUMO

Asthma is the chronic pulmonary inflammatory response that could lead to respiratory failure when allergic reactions exacerbate. It is featured by type 2 immunity with eosinophilic inflammation, mucus, and IgE production, and Th2 cytokine secretion upon repeated challenge of allergens. The symptom severity of asthma displays an apparent circadian rhythm with aggravated airway resistance in the early morning in patients. Bmal1 is the core regulator of the circadian clock, while the regulatory role of Bmal1 in asthma remains unclear. Here, we investigate whether the myeloid Bmal1 is involved in the pathogenesis of house dust mite (HDM)-induced lung allergy. We found that knockdown of Bmal1 in macrophages suppressed the time-of-day variance of the eosinophil infiltration in the alveolar spaces in chronic asthmatic mice. This was accompanied by decreased bronchial mucus production, collagen deposition, and HDM-specific IgE production. However, the suppression effects of myeloid Bmal1 deletion did not alter the allergic responses in short-term exposure to HDM. The transcriptome profile of alveolar macrophages (AMs) showed that Bmal1-deficient AMs have enhanced phagocytosis and reduced production of allergy-mediating prostanoids thromboxane A2 and prostaglandin F2α synthesis. The attenuated thromboxane A2 and prostaglandin F2α may lead to less induction of the eosinophil chemokine Ccl11 expression in bronchial epithelial cells. In summary, our study demonstrates that Bmal1 ablation in macrophages attenuates eosinophilic inflammation in HDM-induced chronic lung allergy, which involves enhanced phagocytosis and reduced prostanoid secretion.


Assuntos
Asma , Eosinofilia , Hipersensibilidade , Humanos , Camundongos , Animais , Pyroglyphidae , Dinoprosta/metabolismo , Tromboxano A2/metabolismo , Pulmão , Alérgenos , Eosinofilia/metabolismo , Eosinofilia/patologia , Imunoglobulina E/metabolismo , Inflamação/patologia , Modelos Animais de Doenças
5.
Eur J Neurosci ; 59(7): 1428-1440, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151046

RESUMO

Methamphetamine use disorder (MAUD) can substantially jeopardize public security due to its high-risk social psychology and behaviour. Given that the dopamine reward system is intimately correlated with MAUD, we investigated the association of single nucleotide polymorphisms (SNPs), as well as methylation status of dopamine receptor type 4 (DRD4), catechol-O-methyltransferase (COMT) genes, and paranoid and motor-impulsive symptoms in MAUD patients. A total of 189 MAUD patients participated in our study. Peripheral blood samples were used to detect 3 SNPs and 35 CpG units of methylation in the DRD4 gene promoter region and 5 SNPs and 39 CpG units in the COMT gene. MAUD patients with the DRD4 rs1800955 C allele have a lower percentage of paranoid symptoms than those with the rs1800955 TT allele. Individuals with paranoid symptoms exhibited a reduced methylation degree at a particular DRD4 CpG2.3 unit. The interaction of the DRD4 rs1800955 C allele and the reduced DRD4CpG2.3 methylation degree were associated with a lower occurrence of paranoid symptoms. Meanwhile, those with the COMT rs4818 CC allele had lower motor-impulsivity scores in MAUD patients but greater COMT methylation levels in the promoter region and methylation degree at the COMT CpG 51.52 unit. Therefore, based only on the COMT rs4818 CC polymorphism, there was a negative correlation between COMT methylation and motor-impulsive scores. Our preliminary results provide a clue that the combination of SNP genotype and methylation status of the DRD4 and COMT genes serve as biological indicators for the prevalence of relatively high-risk psychotic symptoms in MAUD patients.


Assuntos
Metanfetamina , Polimorfismo de Nucleotídeo Único , Humanos , Catecol O-Metiltransferase/genética , Dopamina , Metanfetamina/efeitos adversos , Genótipo , Metilação
6.
J Sports Sci ; 41(16): 1547-1557, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37963176

RESUMO

Increasing daily physical activity (PA) is a practical way to decrease the risk of cardiometabolic diseases, while the studies on exercise intensity remain limited. The purpose of the present study was to compare the effects of increasing light PA (LPA) or moderate-to-vigorous PA (MVPA) for 12 weeks on cardiometabolic markers in Chinese adults with obesity. Fifty-three adults were randomly assigned to the 1) control group, 2) LPA group, and 3) MVPA group in free-living settings. The intervention effects on body composition, cardiorespiratory fitness, and cardiometabolic biomarkers were analysed using a generalized estimated equation model adjusted for baseline values and potential confounders. Compared with the control group, the MVPA group showed improvements in body composition, lipids, C-peptide, monocyte chemoattractant protein-1 (MCP-1), interleukin-8, leptin, and E-selectin. A favourable change in triglycerides and E-selectin were observed in the LPA group when compared to the control group. Lastly, improvements in waist circumference, C-reactive protein, and MCP-1 were observed in the MVPA group when compared to those in the LPA group. Although increasing both LPA and MVPA improved certain cardiometabolic biomarkers, the latter may have more benefits. These findings imply that MVPA may reduce cardiometabolic disease risk more effectively than LPA, especially in Chinese adults with obesity.


Assuntos
Doenças Cardiovasculares , Selectina E , Adulto , Humanos , Comportamento Sedentário , Obesidade , Exercício Físico , Doenças Cardiovasculares/prevenção & controle , Biomarcadores , China , Circunferência da Cintura
7.
Cell Rep ; 42(8): 112964, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37556326

RESUMO

Peripheral arterial disease (PAD) is one of the leading causes of cardiovascular morbidity and mortality worldwide, yet current trials on therapeutic angiogenesis remain suboptimal. Type 2 immunity is critical for post-ischemic regeneration, but its regulatory role in revascularization is poorly characterized. Here, we show that type 2 cytokines, interleukin-4 (IL-4) and interleukin-13 (IL-13), are the key mediators in post-ischemic angiogenesis. IL-4/IL-13-deficient mice exhibit impaired reperfusion and muscle repair in an experimental model of PAD. We find that deletion of IL-4Rα in the endothelial compartment, rather than the myeloid compartment, leads to remarkable impairment in revascularization. Mechanistically, IL-4/IL-13 promote endothelial cell proliferation, migration, and tube formation via IL-4Rα/STAT6 signaling. Furthermore, attenuated IL-4/IL-13 expression is associated with the angiogenesis deficit in the setting of diabetic PAD, while IL-4/IL-13 treatment rescues this defective regeneration. Our findings reveal the therapeutic potential of type 2 cytokines in treating patients with muscle ischemia.

8.
NPJ Regen Med ; 8(1): 29, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291182

RESUMO

Healing of the cutaneous wound requires macrophage recruitment at the sites of injury, where chemotactic migration of macrophages toward the wound is regulated by local inflammation. Recent studies suggest a positive contribution of DNA methyltransferase 1 (Dnmt1) to macrophage pro-informatory responses; however, its role in regulating macrophage motility remains unknown. In this study, myeloid-specific depletion of Dnmt1 in mice promoted cutaneous wound healing and de-suppressed the lipopolysaccharides (LPS)-inhibited macrophage motility. Dnmt1 inhibition in macrophages eliminated the LPS-stimulated changes in cellular mechanical properties in terms of elasticity and viscoelasticity. LPS increased the cellular accumulation of cholesterol in a Dnmt1-depedent manner; cholesterol content determined cellular stiffness and motility. Lipidomic analysis indicated that Dnmt1 inhibition altered the cellular lipid homeostasis, probably through down-regulating the expression of cluster of differentiation 36 CD36 (facilitating lipid influx) and up-regulating the expression of ATP-binding cassette transporter ABCA1 (mediating lipid efflux) and sterol O-acyltransferase 1 SOAT1 (also named ACAT1, catalyzing the esterification of cholesterol). Our study revealed a Dnmt1-dependent epigenetic mechanism in the control of macrophage mechanical properties and the related chemotactic motility, indicating Dnmt1 as both a marker of diseases and a potential target of therapeutic intervention for wound healing.

9.
Foods ; 12(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37238817

RESUMO

This study investigated the effects of different drying methods on the drying characteristics, three-dimensional (3D) appearance, color, total polysaccharide content (TPC), antioxidant activity, and microstructure of Pleurotus eryngii slices. The drying methods included hot air drying (HAD), infrared drying (ID), and microwave drying (MD). The results showed that the drying method and conditions significantly influenced the drying time, with MD having a significant advantage in reducing the drying time. The 3D appearance of P. eryngii slices was evaluated based on shrinkage and roughness as quantitative indexes, and the best appearance was obtained by hot air drying at 55 and 65 °C. HAD and ID at lower drying temperatures obtained better color, TPC, and antioxidant activity, but MD significantly damaged the color and nutritional quality of P. eryngii. The microstructure of dried P. eryngii slices was observed using scanning electron microscopy, and the results showed that drying methods and conditions had an obvious effect on the microstructure of P. eryngii slices. Scattered mycelia were clearly observed in P. eryngii samples dried by HAD and ID at lower drying temperatures, while high drying temperatures led to the cross-linking and aggregation of mycelia. This study offers scientific and technical support for choosing appropriate drying methods to achieve a desirable appearance and quality of dried P. eryngii.

10.
Front Psychiatry ; 14: 1147060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051166

RESUMO

Background: Co-occurring depressive disorder (DD) in patients of methamphetamine use disorder (MAUD) impacts the diagnosis, treatment, and prognosis of the disease. Although FKBP5 has been associated with a variety of psychiatric disorders, whether FKBP5 influences depression susceptibility in MAUD is unknown so far. Methods: Here, we sequenced six FKBP5 single-nucleotide polymorphism (SNP) sites (rs4713916, rs6926133, rs9470080, rs737054, rs4713902, and rs9470079) in 282 methamphetamine users. MAUD and DD were evaluated by clinical questionnaires. SPSS was used to analyze the relationship between FKBP5 SNPs and DD in individuals with MAUD. Results: Of the 282 methamphetamine users, 161 individuals met the MAUD criteria, and among them, 50 patients (31.1%) had DD co-occurring. Importantly, the incidence of DD in individuals with MAUD was 3.314 times greater than that of the methamphetamine users who did not meet the MAUD criteria (p < 0.001). Although none of the six SNPs of FKBP5 were correlated with the co-occurrence of DD in the population with MAUD, two FKBP5 alleles (rs4713916A and rs6926133A) were substantially associated with the higher DD scores in patients with MAUD (p < 0.05). Moreover, those with the two risk alleles do not have much higher scores than those with a single risk allele, and the strong linkage disequilibrium of the two SNPs may be the underlying cause of this result. Despite having weak linkage disequilibrium with either rs4713916 or rs6926133, FKBP5 rs9470079 became risky when paired with either. Conclusion: The results of this study revealed that the FKBP5 risk alleles (rs4713916A and rs6926133A) were associated with a greater probability of severe DD in patients with MAUD. These findings here would help with the development of biological early warning markers and the creation of personalized treatment strategies for MAUD.

11.
Med ; 4(4): 223-225, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37060898

RESUMO

Sodium chloride cotransporter (NCC) plays a crucial role in regulating blood pressure through Na+ reabsorption. Recently, in Nature, Fan et al. determined the structure of human NCC and revealed the mechanism of action of thiazide diuretics, establishing the groundwork for future drug development.1.


Assuntos
Natriurese , Sódio , Humanos , Sódio/metabolismo , Simportadores de Cloreto de Sódio , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Biologia
12.
Mol Neurobiol ; 60(7): 3708-3723, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36933147

RESUMO

Posttraumatic stress disorder (PTSD) is a neuropsychiatric disease closely related to life-threatening events and psychological stress. Re-experiencing, hyperarousal, avoidance, and numbness are the hallmark symptoms of PTSD, but their underlying neurological processes have not been clearly elucidated. Therefore, the identification and development of drugs for PTSD that targets brain neuronal activities have stalled. Considering that the persistent fear memory induced by traumatic stimulation causes high alertness, high arousal, and cognitive impairment of PTSD symptoms. While the midbrain dopamine system can affect physiological processes such as aversive fear memory learning, consolidation, persistence, and extinction, by altering the functions of the dopaminergic neurons, our viewpoint is that the dopamine system plays a considerable role in the PTSD occurrence and acts as a potential therapeutic target of the disorder. This paper reviews recent findings on the structural and functional connections between ventral tegmental area neurons and the core synaptic circuits involved in PTSD, gene polymorphisms related to the dopamine system that confer susceptibility to clinical PTSD. Moreover, the progress of research on medications that target the dopamine system as PTSD therapies is also discussed. Our goal is to offer some hints for early detection and assist in identifying novel, efficient approaches for treating PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/psicologia , Dopamina , Extinção Psicológica , Medo/fisiologia , Neurônios Dopaminérgicos
13.
iScience ; 26(3): 106272, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36915676

RESUMO

Beige adipocytes are thermogenic with high expression of uncoupling protein 1 in the white adipose tissue (WAT), accompanied by angiogenesis. Previous studies showed that Smad4 is important for angiogenesis. Here we studied whether endothelial Smad4-mediated angiogenesis is involved in WAT beiging. Inducible knockout of endothelial cell (EC) selective Smad4 (Smad4 iEC-KO) was achieved by using the Smad4 Floxp/floxp and Tie2 CreERT2 mice. Beige fat induction achieved by cold or adrenergic agonist, and angiogenesis were attenuated in WAT of Smad4 iEC-KO mice, with the less proliferation of ECs and adipogenic precursors. RNA sequencing of human ECs showed that Smad4 is involved in angiogenesis-related pathways. Knockdown of SMAD4 attenuated the upregulation of VEGFA, PDGFA, and angiogenesis in vitro. Treatment of human ECs with palmitic acid-induced Smad1/5 phosphorylation and the upregulation of core endothelial genes. Our study shows that endothelial Smad4 is involved in WAT beiging through angiogenesis and the expansion of adipose precursors into beige adipocytes.

14.
Eur J Sport Sci ; 23(7): 1446-1456, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36738277

RESUMO

Background: Elevated postprandial glucose (PPG) is an independent risk factor for cardiovascular disease. Post-meal exercise effectively reduces PPG concentrations. However, the effect of accumulated versus continuous post-meal exercise on PPG control remains unclear. This study aimed to investigate the effects of individualized accumulated or continuous exercise on PPG in young adults with obesity.Twenty young adults with obesity (11 males) completed three 4-h randomized crossover trials with 6-14-day washout periods: (1) sitting (SIT), (2) one 30-min walking bout (CONT), and (3) three 10-min walking bouts separated by 20-min resting (ACCU). Walking was initiated 20 min before individual PPG peak after breakfast, which was predetermined by continuous glucose monitoring. Blood samples were collected at 15-30 min intervals, and the 24-h glucose was monitored via continuous glucose monitoring.Results: The 4-h PPG incremental area under the curve (iAUC) was 12.1%±30.9% and 21.5%±21.5% smaller after CONT (P = 0.022) and ACCU (P < 0.001), respectively, than after SIT. PPG concentrations were lower during CONT at 30-60 min and during ACCU at 30-105 min after breakfast than during SIT (all P < 0.05). The 4-h plasma insulin and C-peptide iAUC, and mean amplitude of glycemic excursions were lower after CONT and ACCU than after SIT (all P < 0.05).Conclusions: Both continuous and accumulated exercises reduced PPG, insulin, and C-peptide concentrations and improved glucose fluctuations. Accumulated exercise maintained lower PPG concentrations for a longer time than continuous exercise in young adults with obesity.Clinical Trial Information: Clinical trial registration No. ChiCTR 2000035064, URL: http://www.chictr.org.cn/showproj.aspx?proj=56584; (registered July 29, 2020).


Both continuous and accumulated walking lowered post-meal glucose, insulin and C-peptide levels and improved glucose fluctuation.Postprandial glucose was kept lower for a longer time in accumulated than continuous walking.Accumulated post-meal exercise (e.g. three 10-min bouts of walking) could be recommended as a feasible and practical alternative protocol for postprandial glucose control, especially for those who have difficulty performing sufficient exercise in one session.


Assuntos
Automonitorização da Glicemia , Glicemia , Masculino , Humanos , Adulto Jovem , Peptídeo C , Exercício Físico , Caminhada , Obesidade/terapia , Estudos Cross-Over
15.
Cell Death Differ ; 30(1): 152-167, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36153410

RESUMO

Exercise in later life is important for bone health and delays the progression of osteoporotic bone loss. Osteocytes are the major bone cells responsible for transforming mechanical stimuli into cellular signals through their highly specialized lacunocanalicular networks (LCN). Osteocyte activity and LCN degenerate with aging, thus might impair the effectiveness of exercise on bone health; however, the underlying mechanism and clinical implications remain elusive. Herein, we showed that deletion of Sirt3 in osteocytes could impair the formation of osteocyte dendritic processes and inhibit bone gain in response to exercise in vivo. Mechanistic studies revealed that Sirt3 regulates E11/gp38 through the protein kinase A (PKA)/cAMP response element-binding protein (CREB) signaling pathway. Additionally, the Sirt3 activator honokiol enhanced the sensitivity of osteocytes to fluid shear stress in vitro, and intraperitoneal injection of honokiol reduced bone loss in aged mice in a dose-dependent manner. Collectively, Sirt3 in osteocytes regulates bone mass and mechanical responses through the regulation of E11/gp38. Therefore, targeting Sirt3 could be a novel therapeutic strategy to prevent age-related bone loss and augment the benefits of exercise on the senescent skeleton.


Assuntos
Sirtuína 3 , Camundongos , Animais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Osso e Ossos/metabolismo , Osteócitos/metabolismo , Transdução de Sinais
16.
J Hazard Mater ; 443(Pt B): 130289, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36345059

RESUMO

Ultrasensitive real-time detection of trace Pb2+ in continuous flow is vital to effectively and timely eliminate the potential hazards to ecosystem health and sustainability. This work reports on a micro-structured smart hydrogel grating with ultra-sensitivity, high selectivity, good transparency and mechanical property for real-time detection of Pb2+ in continuous flow. The hydrogel grating possesses uniform surface relief microstructures with periodic nano-height ridges made of poly(acrylamide-co-benzo-18-crown-6-acrylamide) networks that crosslinked by tetra-arm star poly(ethylene glycol)acrylamide. The hydrogel grating with good optical transparency and mechanical property can change its height via selective host-guest complexation with Pb2+ to output a changed diffraction efficiency. Meanwhile, the periodic nano-ridges with large specific area benefit the contact with Pb2+ for fast Pb2+-induced height change. Thus, with such rationally designed molecular structures and surface relief microstructures, the hydrogel grating integrated in a glass-based mini-chip allows real-time detection of Pb2+ in continuous flow with ultra-sensitivity and high selectivity. The hydrogel grating detector can achieve ultralow detection limit (10-9 M Pb2+), fast response (2 min), and selective detection of Pb2+ from dozens of interfering ions even with high concentrations. This high-performance hydrogel grating detector is general and can be extended to detect many analytes due to the wide choice of responsive hydrogels, thus opening new areas for creating advanced smart detectors in analytical science.


Assuntos
Hidrogéis , Chumbo , Hidrogéis/química , Ecossistema , Íons/química , Acrilamida
17.
Biomed Environ Sci ; 35(9): 811-820, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36189996

RESUMO

Objective: High glucose (HG) can influence the osteogenic differentiation ability of periodontal ligament stem cells (PDLSCs). Human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-exo) have broad application prospects in tissue healing. The current study aimed to explore whether hUCMSC-exo could promote the osteogenic differentiation of hPDLSCs under HG conditions and the underlying mechanism. Methods: We used a 30 mmol/L glucose concentration to simulate HG conditions. CCK-8 assay was performed to evaluate the effect of hUCMSC-exo on the proliferation of hPDLSCs. Alkaline phosphatase (ALP) staining, ALP activity, and qRT-PCR were performed to evaluate the pro-osteogenic effect of hUCMSC-exo on hPDLSCs. Western blot analysis was conducted to evaluate the underlying mechanism. Results: The results of the CCK-8 assay, ALP staining, ALP activity, and qRT-PCR assay showed that hUCMSC-exo significantly promoted cell proliferation and osteogenic differentiation in a dose-dependent manner. The Western blot results revealed that hUCMSC-exo significantly increased the levels of p-PI3K and p-AKT in cells, and the effect was inhibited by LY294002 (PI3K inhibitor) or MK2206 (AKT inhibitor), respectively. Moreover, the increases in osteogenic indicators induced by hUCMSC-exo were significantly suppressed by LY294002 and MK2206. Conclusion: hUCMSC-exo promote the osteogenic differentiation of hPDLSCs under HG conditions through the PI3K/AKT signaling pathway.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Fosfatase Alcalina , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Exossomos/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Ligamento Periodontal/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Cordão Umbilical/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(39): e2201443119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122215

RESUMO

Atherosclerosis treatments by gene regulation are garnering attention, yet delivery of gene cargoes to atherosclerotic plaques remains inefficient. Here, we demonstrate that assembly of therapeutic oligonucleotides into a three-dimensional spherical nucleic acid nanostructure improves their systemic delivery to the plaque and the treatment of atherosclerosis. This noncationic nanoparticle contains a shell of microRNA-146a oligonucleotides, which regulate the NF-κB pathway, for achieving transfection-free cellular entry. Upon an intravenous injection into apolipoprotein E knockout mice fed with a high-cholesterol diet, this nanoparticle naturally targets class A scavenger receptor on plaque macrophages and endothelial cells, contributing to elevated delivery to the plaques (∼1.2% of the injected dose). Repeated injections of the nanoparticle modulate genes related to immune response and vascular inflammation, leading to reduced and stabilized plaques but without inducing severe toxicity. Our nanoparticle offers a safe and effective treatment of atherosclerosis and reveals the promise of nucleic acid nanotechnology for cardiovascular disease.


Assuntos
Aterosclerose , MicroRNAs , Nanopartículas , Placa Aterosclerótica , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Células Endoteliais/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/uso terapêutico , NF-kappa B/genética , NF-kappa B/metabolismo , Nanopartículas/química , Nanopartículas/uso terapêutico , Oligonucleotídeos/uso terapêutico , Placa Aterosclerótica/metabolismo , Receptores Depuradores/metabolismo
19.
Front Immunol ; 13: 976722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172381

RESUMO

Atherosclerosis refers to the deposition of lipids and the co-existence of inflammation and impaired inflammation resolution in pan-vasculature, which causes lumen narrowing, hardening, plaque formation, and the manifestation of acute cardiovascular events. Emerging evidence has suggested that vascular circulation can be viewed as a complex homeostatic system analogous to a mini-ecosystem which consists of the vascular microenvironment (niche) and the crosstalk among phenotypically and functionally diverse vascular cell types. Here, we elucidate how cell components in the vascular wall affect vascular homeostasis, structure, function, and atherosclerosis in a holistic perspective. Finally, we discuss the potential role of vascular-stabilizing strategies including pharmacotherapies, natural substances and lifestyle modifications, in preventing cardiovascular diseases by preserving vascular integrity and homeostasis.


Assuntos
Aterosclerose , Ecossistema , Aterosclerose/metabolismo , Homeostase , Humanos , Inflamação , Lipídeos
20.
Neuroscience ; 502: 52-67, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985504

RESUMO

Mechanical allodynia impinges on the life quality of patients. Hen Egg Lysozyme (HEL) is a substance extracted from eggs that is commonly used to inhibit bacterial activity. The role of HEL in regulating and treating pain is unclear. Here, we find that HEL selectively attenuates static mechanical allodynia of mice induced by complete Freund's adjuvant (CFA), spinal nerve ligation (SNL) and chemotherapeutic agent. RNA-seq screening reveals that CFA significantly reduces the expression of Parkin in dorsal root ganglion (DRG) neurons of mice, while pre-administration of HEL increases the expression of Parkin and remits the static mechanical allodynia induced by Parkin-siRNA. Moreover, HEL increases the interaction between nuclear respiratory factor 1 (NRF1) and histone acetyltransferase P300 and then enhances the NRF1 mediated histone acetylation in prkn promoter region in DRGs of mice. Further, Parkin interacts with mechanotransducing ion channel TACAN (Tmem120a) and knockdown of Parkin significantly increases the membrane trafficking of TACAN in sensory neurons of mice. While pre-administration of HEL inhibits the increased membrane trafficking of TACAN in sensory neurons of mice induced by Parkin-siRNA. In addition, pre-given of HEL also significantly attenuates the static mechanical allodynia induced by overexpression of TACAN in mice, and the effect of HEL can be blocked by Parkin-siRNA. This indicates that HEL increases the expression of Parkin through epigenetic mechanisms and then decreases TACAN membrane trafficking in sensory neurons to relieve static mechanical hypersensitivity. Therefore, we reveal a novel function of HEL, which is a potential substance for the treatment of static mechanical pain.


Assuntos
Hiperalgesia , Fator 1 Nuclear Respiratório , Animais , Camundongos , Adjuvante de Freund , Histona Acetiltransferases/uso terapêutico , Histonas , Canais Iônicos , Dor/tratamento farmacológico , RNA Interferente Pequeno , Células Receptoras Sensoriais , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...